
Terminology Evolution Module for Web Archives in the
LiWA Context∗

Nina Tahmasebi
L3S Research Center

Appelstr. 9a
Hannover, Germany

tahmasebi@L3S.de

Gideon Zenz
L3S Research Center

Appelstr. 9a
Hannover, Germany

zenz@L3S.de

Tereza Iofciu
L3S Research Center

Appelstr. 4
Hannover, Germany
iofciu@L3S.de

Thomas Risse
L3S Research Center

Appelstr. 9a
Hannover, Germany

risse@L3S.de

ABSTRACT
More and more national libraries and institutes are archiving
the web as a part of the cultural heritage. As with all long
term archives, these archives contain text and language that
evolves over time. This is particularly true for web archives
as content published online is highly dynamic and changing
at a fast rate. The language evolution causes gaps between
the terminology used for querying and the one stored in long
term archives. To ensure access and interpretability of these
archives, language evolution must be found and handled in
an automatic manner. In this paper we present the LiWA
Terminology evolution module, TeVo which takes us one step
closer to fully automatic detection of terminology evolution.
TeVo consists of a pipeline for finding evolution from web
archives based on the UIMA framework. The LiWA TeVo
module consists of two main processing chains, the first for
Warc file extraction and text processing and the second for
finding terminology evolution. We also present the termi-
nology evolution browser, the TeVo browser, which aids in
exploring evolution of terms present in archives.

Categories and Subject Descriptors
H.3.6 [Library Automation]: Large text archives; H.3.1
[Content Analysis and Indexing]: Linguistic processing

General Terms
Terminology Evolution, Semantics, Information Extraction

∗This work is partly funded by the European Commission
under LiWA (IST 216267).

1. INTRODUCTION
Preserving knowledge for future generations is a major rea-
son for collecting all kinds of publications, web pages, etc.
in archives. However, ensuring the archival of content is just
the first step toward “full” content preservation. It also has
to be guaranteed that content can be found and interpreted
in the long run.

Currently the semantic accessibility of web content suffers
due to changes in language over time, especially when con-
sidering time frames beyond ten years. Language changes
are triggered by various factors including new insights, new
political and cultural trends, new legal requirements or high-
impact events. For example, consider the name of the city
Saint Petersburg: the Russian city was founded in 1703 as
“Sankt Piter Burh”and soon after renamed to“Saint Peters-
burg”. From 1914-1924 it was named “Petrograd” and after-
wards “Leningrad”, then changed back to “Saint Petersburg”
in 1991. Terminology evolution is not restricted to location
names but refers to all added, changed or removed senses
for a term.

The work in this paper is done within the scope of the LiWA
project1. In LiWA, short for Living Web Archives, the ob-
jective is to turn web archives from mere web page repos-
itories into living web archives. LiWA aims at improving
web archives by filtering out irrelevant content such as web
spam [8]; and dealing with issues of temporal web archive
coherence [19], as well as improving long-term usability.

Within the LiWA project an abstract model presented in [21]
and [23] has been developed, that allows the representation
of terminology snapshots at different moments in time, ex-
tracted from large digital corpora. In order to apply the ter-
minology evolution detection algorithms to web archives we
have implemented a terminology extraction pipeline based
on the Apache UIMA2 framework.

The remaining paper is organized as follows. We begin by
giving an overview of the architecture for the TeVo module

1http://www.liwa-project.eu/
2http://incubator.apache.org/uima/



Crawler

Post-Processing

put (List <WarcFiles>)

Asynchron

Job Queue

Terminology Extraction Pipeline

WARC Extraction POS Tagger Lemmatizer
Cooccurence

Analysis

Evolution Detection Pipeline

Word Sense

Discrimination

Cluster

Tracking

Evolution

Detection

….

Curator

Crawl

Statistics WARC

Files
TermEvolu

DB

Figure 1: TeVo architecture in LiWA.

in Section 2. The first part of our module concerning ter-
minology extraction is explained in detail in Section 3. The
second part concerning word sense detection is explained in
Section 4. We present our visualization tool in Section 5.
Experiments conducted with the module on a excerpt of a
web archive is given in Section 6. We review related work
in Section 7 and conclude our paper as well as discuss future
work in Section 8.

2. ARCHITECTURE
The LiWA TeVo Module is split into terminology extraction
and tracing of terminology evolution. It is a post-processing
module and can be triggered once a crawl or a partial crawl
is finished. As input the module takes WARC or ARC files
created, e.g., by Heritrix.

The terminology extraction pipeline is implemented using
UIMA, as presented in Figure 1. Apache UIMA (originally
developed by IBM) is a software framework for unstructured
information management applications. The UIMA frame-
work is very scalable and can analyze large amounts of un-
structured information. Furthermore its modular design al-
lows for easy extension and adoption for the TeVo module.
The data exchange between pipeline components is done via
the Common Analysis System (CAS) as described in [9].

The evolution detection pipeline is manually triggered by
the archive curator based on crawl statistics gathered during
terminology extraction. When enough data is extracted or
the desired time frame is reached, the curator can start the
evolution detection pipeline.

3. TERMINOLOGY EXTRACTION
For extracting terminology from web archives we have build
a pipeline, as can be seen in the Terminology Extraction
UIMA Pipeline in Figure 1, with the following UIMA com-
ponents:

• WARC Extraction: Archive Collection Reader, using
BoilerPipe [10] for extracting text from web documents.

Figure 2: Example of an ARC file and the extracted

information.

• POS Tagger and Lemmatizer : Natural Language Pro-
cessing using DKPro [13] UIMA components.

• Cooccurrence Analysis: AnnotationsToDB, writing the
terminology and document metadata to a MySQL data-
base, TeVo DB.

When the processing finishes and the extracted terminology
is indexed, terminology co-occurrence graphs can be created
for different time intervals. The extraction pipeline can be
called several times before the curator initiates the evolution
detection pipeline.

3.1 Collection Reader
The first task in our system is to extract and annotate the
text from web archives, which have the ARC or WARC for-
mat3. In order to iterate through the web pages crawled and
stored in an archive we integrated the archive reading tools
from Heretrix Java Api4 from Internet Archive.

For each archive file we retrieve the URL, the crawl date,
the content type and the encoding from the archive header
as shown in Figure 2.

For the archive files with content type text/html we retrieve
the html content and then, based on the encoding, we ex-
tract the textual content using the BoilerPipe Java Api [10].
One of the major issues when dealing with web data is ex-
tracting the text from the html document. By using simple

3http://www.digitalpreservation.gov/formats/fdd/fdd000236.shtml
4http://crawler.archive.org/



HTML stripping tools, it is inevitable to extract also un-
wanted text, like table headers and advertisement tags. By
using the boilerpipe library algorithms we better extract the
main textual content of a web page. Extracting content is
very fast (milliseconds) and no global or site-level informa-
tion is required.

For each text file from the archive we create a document with
the URI annotated as document id and text as ArticleText.
As additional document metadata we annotate the crawl
date and the crawl title as given by the archive name.

3.2 NLP Annotator
In the next step we annotate the article text using the com-
ponents of the DKPro (Darmstadt Knowledge Repository)5,
a collection of UIMA-based components for NLP tasks. We
process the text of each article using two annotators from
DKPro: the BreakIteratorSegmenter for sentence splitting
and tokenization, and the TreeTaggerPosLemmaTT4J an-
notator for part-of-speech tagging and lemmatization. The
POSTagger and Lemmatizer from DKPro are wrappers for
TreeTagger [17].

3.3 Terminology Indexing
In order to make the terminology extracted from the archives
available for further analysis, we implemented a database in-
dex for the found documents and terms. For detecting ter-
minology evolution, the curvature clustering algorithm pre-
sented in [7] works on lemmas of nouns co-occurring within
and and or clauses, or in lists separated by commas.

In theAnnotationsToDB annotator we insert metadata about
each analyzed document, i.e. its URL, the crawling date and
the crawl name, into the database (see the diagram in Fig-
ure 3). Additionally we insert all the annotated sentences
with the information regarding sentence position.

As a start, we are interested in the evolution of nouns.
Therefore we only insert lemmas of nouns occurring in doc-
uments into the database, along with their position informa-
tion, beginning and end offset. All remaining annotated to-
kens, other than nouns and conjunctions are omitted. These
would make the preprocessing expensive both in terms of
storage as well as running time. When building the co-
occurrence graphs we consider nouns appearing in the same
list, thus we have to tackle the problem of articles and cardi-
nals appearing before a noun. For example, in the sentence
“It involves forgiveness and a readiness to accept ...”, the
nouns forgiveness and readiness appear in an “and” clause.
Inserting the original offsets of the two nouns would hinder
us from retrieving the relations between them using a simple
select based on position. To overcome this limitation for all
nouns preceded by articles (a, the, ...) or cardinals (one, 20,
...) we use the beginning offset of the preceding token as
beginning offset.

One issue that frequently appears when dealing with archives
generated by regular crawls is duplicate data. Pages that
are not changed between two crawls will be duplicated in
the archive. At terminology level, duplicate data may neg-
atively bias the terminology analysis [23]. To overcome this

5http://www.ukp.tu-darmstadt.de/research/projects/dkpro/

Figure 3: TeVo DB Schema

issue, when a document is found with a URL which already
exists in the index, we check if the two documents have the
same set of lemmas. We consider two documents to be the
same, or have non-significant changes if the overlap between
the two lemma sets is higher than a threshold. The thresh-
old can be configured, based on initial experiments we used
a threshold of 80%.

Web pages can be static or dynamically generated. While
the static pages have a unique fixed URL, the dynamic ones
are being generated based on the parameters in the POST
or GET parameters from the HTML request. Thus, within
the same crawl there are possibly different pages with the
same URL. For this situation, we first check that the pages
have distinct lemma sets as in the previous scenario. If we
can conclude that the pages indeed have different content,
we append a random number to the URL of the second page
before inserting it as the document identifier in the database.

Finally the co-occurrence graph is stored in the TeVo DB
and can be fetched by the evolution detection module.

4. TERMINOLOGY EVOLUTION
After finishing the terminology indexing step, we can start
extracting word senses and tracking evolution. In the first
step we fetch a co-occurrence graph from the TeVo DB. We
keep all co-occurrences and consider the graph as an un-
weighted graph. We then extract word senses by cluster-
ing the co-occurrence graph. The clustering algorithm is
based on clustering coefficient of each term in the graph, i.e.,
the interconnectedness of the neighbors of a term. Terms
that have a highly interconnected neighborhood are likely to
present stable terms, while terms with a sparsely connected
neighborhood are likely to be ambiguous [7]. By remov-
ing the terms with low clustering coefficient, the graph falls
apart into coherent subgraphs (clusters) which we interpret
as word senses. Previous works [6, 7, 14] have used a cluster-
ing coefficient of 0.5 which provides stable word senses. In



Figure 4: Subgraph from .gov.uk archive from 2006,

each node contains also its clustering coefficient from

the local graph. The graph shows two clusters which

both correspond to means of transportation.

our experiments we use a clustering coefficient of 0.3 which
has shown to provide a larger number of word senses as
well as a higher probability of evolution. It should be noted
that the extracted word senses represent the data available
in the collection from which the co-occurrence analysis has
been gathered.

Figure 4 shows a small part of the graph created for the last
quarter of 2006 from .gov.uk crawls. The term car has a
low clustering coefficient (0.24) since it has many neighbors
which are not connected to each other. When car is removed,
the graph falls apart into two smaller subgraphs. In order
to make these clusters capture also ambiguous words, the
terms which have been removed will be added in the clusters
where they have neighbors. The result is (bicycle, bike, car,
motorbike, scooter, wheelchair) and (car, vehicle, caravan,
trailer, tractor, lorry, number). Each term in one cluster
is closer in meaning to the other words in the cluster than
words from the other cluster. Both clusters correspond to
means of transportation but differ in that the first cluster
corresponds to smaller, mostly two wheel vehicles, while the
second cluster corresponds to larger, four or more wheeled
vehicles.

Once we have created clusters, i.e., word senses, for each
period in time, we can compare these clusters to see if there
has been any evolution. Consider the cluster C1 =(bicycle,
bike, car, motorbike, scooter, wheelchair) from 2006. In 2007
we find the exact same cluster, most likely indicating that
the web pages from 2006 stayed unchanged in 2007. In 2008,
we find a cluster C2 =(motorcycle, moped, scooter, car, mo-
torbike). Because of the high overlap between the clusters,
e.g., car, motorbike, scooter, we can draw the conclusion
that they are highly related. Still we see some shift. In C1,
the words bicycle, bike and wheelchair are representatives of
unmotorized means of transportation, while in C2, only mo-
torized means of transportations are present. Because of the
short time span we cannot draw any conclusions of real ter-
minology evolution, however we can say that there has been
a shift in usage in the archive. In 2003-2005 we cannot find
a cluster related to motorbike. This is likely a consequence
of data selection and comes from using a random sample of
each crawl.

Current LiWA tracking technology use Jaccard similarity
to compare clusters. This means that for two clusters, we

Figure 5: User-interface showing clusters for term

Motorbike

look at the fraction between the overlapping terms and the
total number of distinct terms contained in both clusters.
The similarity scores for two clusters lie between 0 and 1.
Similarity of 1 indicates that two clusters are exactly the
same and a similarity of 0 indicates that two clusters have no
terms in common. For C1 and C2 the Jaccard similarity is 3

8
.

We consider two clusters which have a similarity higher than
α to represent the same word sense. In the above example
C1 would keep its meaning even if one word was removed
from one archive to another, e.g., C1′ = (bicycle, bike, car,
motorbike, scooter) and C1 can be considered to represent
the same sense. When two clusters have a similarity below
β we consider the clusters to have no relation. Clusters with
similarity above β but below α are candidates for evolution.

year cluster members

1867 yard, terrace, flight
1892 hurdle race, flight, year, steeplechase
1927 flight, england, london, ontariolondon
1938 length, flight, spin, pace
1957 flight, speed, direction spin, pace
1973 flight, riding, sailing, vino, free skiing
1980 flight, visa, free board, week, pocket money, home
1984 flight, swimming pool, transfer, accommodation

Table 1: Selected clusters and cluster members for

the term ’flight’ from The Times Archive.

Because available web archives span a relatively short period
of time, true terminology evolution becomes difficult to find.
Therefore, as an example of cluster evolution, we show clus-
ters from The Times Archive [11]. The archive spans from
1785− 1985 and is split into yearly sub-collections and pro-
cessed according to [22]. In Table 1 we see clusters for the
term flight. Among the displayed clusters it is clear that the
senses for flight are several and mostly grouped together.
Between 1867-1894 there are 5 clusters (only two of them
displayed here) that all refer to hurdle races. Between the
years 1938 - 1957 the clusters are referring to cricket, the
terms in the clusters are referring to the ball. Starting from
1973 the clusters correspond to the modern sense of flight as
a means of travel, especially for holidays. The introduction
of among others pocket money, visa, accommodation, differ-



Figure 6: Graphical representation of 2006’s Motor-

bike-Cluster

entiates the latter clusters from the earlier. Also the cluster
in 1927 refers to a flight but not necessarily in a holiday
sense.

5. VISUALIZATION OF EVOLUTION
In order to make the results of the terminology evolution
process end-user accessible, we devised a web-based user in-
terface which allows for exploring the evolution of a given
term. As running example we will use the term motorbike
present in clusters from the 2006-2008 .gov.uk crawls (see
Section 6). After the user specifies the term of interest,
here motorbike, we show all clusters representing this term
over time by displaying the term with the highest clustering
coefficient for each cluster over a time line (right side, Figure
5). Furthermore, we give the term frequency distribution of
the term over time (left side, Figure 5).

By assessing the term frequency distribution, and possibly
combined with a changing cluster representative as seen on
the right side, the user can infer if a significant change of
the word usage happened at a given point in time.

To get a deeper understanding of the context of a given year,
the user can click on a cluster representative. As shown in
Figure 6, all cluster members are displayed along with their
connection.

The TeVo visualization browser enables the user to get a
quick look at what happens to a term over time. First of all
the raw (or normalized) term frequencies over time can give
an indication of an event, or evolution, for a term. If the
term ’motorbike’ spikes in frequency in one year it is worth
the effort to investigate further into that term. In addition
to the term frequencies, the clusters help in getting term
context. Assume that in 2007, a music group named mo-
torbike is started. Then an additional cluster would appear,
containing terms such as music, concerts, CD, release etc.
From this, the user would get an indication of an added (or
inversely) removed word sense. In addition, if there has been
more subtle evolution within a cluster, the user can click on
that cluster and see the other cluster members. In Figure 6,
based on the connections between the cluster members, i.e.,
only to one other term in the cluster, the user can deduce

2003 2004 2005 2006 2007 2008
0

5

10

15
x 10

4

N
o.

 o
f r

el
at

io
ns

Year

Graph Size vs. Term Count

 

 

0

1

2

3
x 10

4

N
o.

 te
rm

s

Graph size
No. of Terms

Figure 7: Number of relations shown for samples

from 2003-2008. We also see the amount of unique

terms from these relations.

that the term wheelchair is less relevant to the cluster for
motorbike. The TeVo visualization browser saves the user
time in finding and reading web pages from the archive for
the term ’motorbike’ from different periods in time to get
this overview.

6. EXPERIMENTS
Our experiments are conducted on sample archives from
.gov.uk crawls available at European Archives6. Archives
from December each year are chosen and processed. The
results are varying sized samples for which we will present
details. Firstly it is clear that the amount of relations ex-
tracted from the yearly samples vary heavily because of the
type of archive. As web archives can contain multimedia
files, images, videos etc, it is difficult to predict the amount
of text from such a sample. This limits the control over the
amount of text extracted and indexed. Furthermore, even
if we can control the amount of text that is processed, if
the crawl is too wide, the extracted relations become sparse
and the amount of useful information in each co-occurrence
graph varies heavily.

In Figure 7 we see the amount of relations as well as how
many unique terms were present in the graphs. In 2003
each term has an average of 2.7 relations in the resulting
graph. In 2006 or 2007, each term has an average of roughly
5.2 relations. A major factor for the observed variation is
the diversity of the data in the crawl. The more diverse
data that is chosen for processing, the fewer are the amount
of relations per term. This varying behavior is also shown
for the number of clusters extracted from the co-occurrence
graphs, Figure 8. In 2003 there is one cluster for every 36th
relation while in 2006 and 2007 there is one cluster for every
700th relation. In 2008 we have one cluster for every 470th
relation. This is most likely a result of the sparseness in the
crawls. Too many topics result in a graph with many rela-
tions that are not creating triangles, which results in many
terms with a low clustering coefficient. These terms are re-
moved in the clustering and do not contribute to creating
clusters.

6http://www.europarchive.org



2003 2004 2005 2006 2007 2008
0%

50%

100%

C
lu

st
e
r 

Q
u
a
lit

y

Year

Clusters and Cluster Quality

0

1000

2000

N
o
. 
C

lu
st

e
rs

 

 
No. of clusters
Quality of Clusters

Figure 8: Number of clusters shown for samples

from 2003-2008. We also see the quality of these

clusters.

We measure the quality of the clusters by measuring the
correspondence of clusters to WordNet synsets [15], i.e., the
amount of clusters which correspond to a word sense. For
this reason we evaluate all clusters with more than one term
from WordNet. An average of 68% of the clusters are used
for evaluation. Figure 8 shows the number of clusters per
year as well as the quality of the clusters. In 2003 where we
have the highest amount of clusters (shown in red), we have
a fairly low quality of the clusters. Only 3 out of 4 clusters
correspond to a word sense. In 2006 and 2007 on the other
hand, we have fewer clusters with a high quality where 9
out of 10 clusters correspond to a word sense. In 2008 the
quality is again lowered. We see that the results of the word
sense discrimination algorithm is very irregular and highly
dependent on the underlying archive. If the documents in
the archive contain high quality, descriptive text, then the
clusters have a high quality. If on the other hand, the doc-
uments in the archive contain a high amount of spam and
advertisements, incorrectly written English etc., then good
quality clusters are more rare.

The remaining clusters, i.e., clusters that are not represent-
ing word senses or not considered in the evaluation, are not
necessarily semantically unrelated clusters. In many cases
they are just not corresponding to word senses. As an ex-
ample, in 2003 we have many clusters which contain peo-
ple names and names of documents, forms etc. (t.ereau,
m-b.delisle, n.kopp, a.dorandeu, f.chretien, h.adle-biassette,
f.gray) are all authors of a paper about Creutzfeldt-Jakob
disease and (sa105, sa104f, sa107, sa103, sa106, sa104, sa1-
03l) are all tax return forms.

6.1 Performance Analysis for Extraction
The run-time performance of the annotators, measured over
a 93.5 MB compressed web archive, is shown in Table 2.
The uncompressed archive size is 194.6 MB and contains
9743 documents, out of which 7654 are of text/html content
type and in English. All the annotators required on average
less than a second per document. Most time is used by
the AnnotationsToDB annotator which transfers the data
to the database. As we do not need the produced CAS files,

we do not need to write the CAS files on disk, thus the
time needed by the CAS Writer can be deducted from the
processing time.

% Time(ms) s/doc Component

1.09% 59905 0.00783 ARC Reader
0.36% 19577 0.00256 BreakIteratorSegmenter
1.93% 106055 0.01386 TreeTaggerPosLemma
95.03% 5218886 0.68185 AnnotationsToDB
1.56% 85732 0.01120 CAS Writer
100% 5508361 0.71967 Entire Pipeline

Table 2: Annotator Processing Time for 7654 docu-

ments

Given the amount of data a typical crawl consists of, the
performance of the annotator still leaves room for improve-
ment. Completing the terminology extraction process for
the gov.uk crawl used in our experiments took 14 days. For
2006-2008 the size of the crawls are presented in Table 3.

One option to speed up the processing is to only index the
lemmas that are needed in the next step, i.e., lemmas with a
preceding or succeeding conjunction. While this restriction
saves processing time, it makes the data unusable for other
co-occurrence filters, like sentence level or window level co-
occurrence.

Year Number of archives Average size Total size

2006 231 93.07 MB 21.5 GB
2007 3087 93.75 MB 289.4 GB
2008 1250 95.36 MB 119.2 GB

Table 3: .gov.uk crawls

We create co-occurrence graphs by selecting lemmas that
appear to the left and right of found conjunctions. From
a 3 GB snippet of the .gov.uk crawl of 2006, 59.844 co-
occurrences were extracted, out of which most of the co-
occurrences had a frequency of 1. This indicates that in
order to produce meaningful co-occurrence graphs that do
not experience the same variance as seen in Figure 7 and 8,
terabytes of data is needed.

7. RELATED WORK
For finding word senses in an automatic way, i.e., word sense
discrimination, several methods based on co-occurrence ana-
lysis and clustering have been proposed like [4, 16, 18].
Taking semantic structures into account improves the dis-
crimination quality. In Dorow et al. [6, 7] it is shown that
co-occurrences of nouns in lists contain valuable informa-
tion about the meaning of words. A graph is constructed
where the nodes are nouns and noun phrases. There exists
an edge between two nodes if the corresponding nouns are
separated by “and”, “or” or commas in the collection. The
graph is clustered based on the clustering coeffient of a node
and the resulting clusters contain semantically related terms
representing word senses. Another approach of word sense
discovery is focused on pattern discovery, such as the one
presented in [4]. In [15] a clustering algorithm called Clus-
tering by Committee is presented. This clustering produces



clusters with words that can be considered synonymous. An
evaluation method is also proposed, where the discovered
word senses can be assessed using WordNet [12].

The output from word sense discrimination is normally a
set of terms to describe senses found in the collection. This
grouping of terms is derived from clustering and we refer to
such an automatically found sense as a cluster. Clustering
techniques can be divided into hard and soft clustering al-
gorithms. In hard clustering, an element can only appear
in one cluster, while soft clustering allows each element to
appear in several clusters. Due to the polysemous property
of words, soft clustering is most appropriate for word sense
discrimination.

Temporal aspects in information retrieval come in different
flavors, such as dealing with temporal information within
documents, or with temporally versioned documents, or dea-
ling with temporal evolution of terminologies extracted from
documents. According to our analysis not much work has
been done on the problem of terminology evolution. Abecker
et al. [1] show how medical vocabulary evolved in the MED-
LINE system. McCray investigates the evolution of the
MESH ontology [2]. In the latter study, psychiatric and psy-
chological terms are manually analyzed and their evolution
is studied over 45 years. Terminology evolution can also
be observed in other domains. For example, in computer
science the Faceted DBLP7 allows analysis of the evolution
of given keywords at different times based on the Semantic
GrowBag approach [5]. However, all these approaches assess
the evolution manually. Furthermore, the results cannot di-
rectly be used by information retrieval systems.

Automatic detection of cluster evolution can aid in auto-
matically detecting terminology evolution. This has been a
well studied field in the recent years. One such approach for
modeling and tracking cluster transitions is presented in a
framework called Monic [20]. In this framework internal as
well as external cluster transitions are monitored. The dis-
advantages of the method are that the algorithm assumes a
hard clustering and that each cluster is considered as a set of
elements without respect to the links between the elements
of the cluster. In a network of lexical co-occurrences, the
links can be valuable since the connections between terms
give useful information to the sense being presented. In [14],
a way to detect evolution is presented which also considers
the edge structure among cluster members.

To our knowledge only one previous work has been pub-
lished in the area of terminology evolution [3]. Using lan-
guage from the past, the aim here is to find good query re-
formulations of concurrent language. A term from a query
can be reformulated with a similar term if the terms in the
resulting query are also coherent and popular. Terms are
considered similar if they co-occur with similar terms from
their respective collections. Our approach advances on this
by using word senses to find similar terms rather than pure
co-occurrence information. Furthermore our approach gives
more advanced knowledge on the evolution such as time in-
formation on the valid reformulations.

7http://dblp.l3s.de/

8. CONCLUSIONS AND FUTURE WORK
In this paper we presented the LiWA Terminology evolution
module, TeVo, which takes us one step closer to fully auto-
matic evolution detection given a long term archive. TeVo
can be integrated effectively as a Heritrix post-processing
module. We focused on extracting terminology needed for
noun evolution detection and on overcoming the challenges
appearing from dealing with web archives. We also intro-
duce a tool which helps visualizing knowledge from, and
discovering properties of a given archive.

We conducted experiments on selections of a large real-world
dataset, which helped us to gain first insights into applying
our terminology evolution algorithms to web archives. As
our experiments show, the variance regarding size and qual-
ity of the co-occurrence graphs was significant. In order
to overcome these issues we need to improve on data selec-
tion or significantly increase the amount of data used. It is
also necessary to investigate further how to properly handle
duplicate data and to find the consequences of keeping or
removing such data.

As future work, we intend to optimize the indexing compo-
nent to make it more applicable to web-scale data. We also
want to utilize the TreeTaggerChunker from DKPro to an-
notate n-grams for detecting noun phrases. Additionally, in-
stead of only taking cluster evolution into account, we want
to specifically find term evolution. This will allow us to
determine e.g. that automobile evolved into car.

Furthermore, we intend to use the TeVo browser to display
parts of the co-occurrence graph for each term. This will
help users to gain even more detailed insights about a term
for a time period. The modules from the TeVo architecture
as well as the TeVo browser will be released as open source
modules before the end of the LiWA project8.

9. ACKNOWLEDGEMENTS
We would like to thank Times Newspapers Limited for pro-
viding the archive of The Times for our research.

10. REFERENCES
[1] A. Abecker and L. Stojanovic. Ontology evolution:

Medline case study. In Proceedings of
Wirtschaftsinformatik 2005: eEconomy, eGovernment,
eSociety, pages 1291–1308, 2005.

[2] Alexa McCray. Taxonomic change as a reflection of
progress in a scientific discipline,
www.l3s.de/web/upload/talk/mccray-talk.pdf.

[3] K. Berberich, S. Bedathur, M. Sozio, and G. Wiekum.
Bridging the terminology gap in web archive search. In
WebDB, 2009.

[4] D. Davidov and A. Rappoport. Efficient unsupervised
discovery of word categories using symmetric patterns
and high frequency words. In ACL ’06: Proceedings of
the 21st International Conference on Computational
Linguistics and the 44th annual meeting of the ACL,
pages 297–304, Sydney, Australia, 2006.

[5] J. Diederich and W. T. Balke. The semantic growbag
algorithm: Automatically deriving categorization

8http://code.google.com/p/liwa-technologies/



systems. In ECDL, volume 4675 of Lecture Notes in
Computer Science, pages 1–13. Springer, 2007.

[6] B. Dorow. A Graph Model for Words and their
Meanings. PhD thesis, University of Stuttgart, 2007.

[7] B. Dorow, J. pierre Eckmann, and D. Sergi. Using
curvature and markov clustering in graphs for lexical
acquisition and word sense discrimination. In In
Workshop MEANING-2005, 2004.

[8] M. Erdélyi, A. A. Benczúr, J. Masanés, and D. Siklósi.
Web spam filtering in internet archives. In AIRWeb,
pages 17–20, 2009.

[9] T. Götz and O. Suhre. Design and implementation of
the uima common analysis system. IBM Syst. J.,
43(3):476–489, 2004.

[10] C. Kohlschütter, P. Fankhauser, and W. Nejdl.
Boilerplate detection using shallow text features. In
WSDM ’10: Proceedings of the third ACM
international conference on Web search and data
mining, pages 441–450, New York, NY, USA, 2010.
ACM.

[11] T. N. Ltd. The Times Archive.
http://archive.timesonline.co.uk/tol/archive/.

[12] G. A. Miller. Wordnet: A lexical database for english.
Communications of the ACM, 38:39–41, 1995.

[13] C. Müller, T. Zesch, M.-C. Müller, D. Bernhard,
K. Ignatova, I. Gurevych, and M. Mühlhäuser.
Flexible uima components for information retrieval
research. In Proceedings of the LREC 2008 Workshop
’Towards Enhanced Interoperability for Large HLT
Systems: UIMA for NLP’, pages 24–27, Marrakech,
Morocco, May 2008.

[14] G. Palla, A.-L. Barabasi, and T. Vicsek. Quantifying
social group evolution. Nature, 446(7136):664–667,
April 2007.

[15] P. Pantel and D. Lin. Discovering word senses from
text. In KDD ’02: Proceedings of the eighth ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 613–619, Edmonton,
Alberta, Canada, 2002. ACM.

[16] T. Pedersen and R. Bruce. Distinguishing word senses
in untagged text. In Proceedings of the Second
Conference on Empirical Methods in Natural Language
Processing, pages 197–207, Providence, RI, 1997.
Comment: 11 pages, latex, uses aclap.sty.

[17] H. Schmid. Probabilistic part-of-speech tagging using
decision trees. In Proceedings of the International
Conference on New Methods in Language Processing,
pages 44–49, Manchester, UK, 1994.
http://www.ims.uni-
stuttgart.de/projekte/corplex/TreeTagger/Decision-
TreeTagger.html.

[18] H. Schütze. Automatic word sense discrimination.
Computational Linguistics, 24(1):97–123, 1998.

[19] M. Spaniol, A. Mazeika, D. Denev, and G. Weikum.

âĂIJcatch me if you canâĂİ: Visual analysis of
coherence defects in web archiving. In In Proceedings
of 9th International Web Archiving Workshop in
conjunction with ECDL 2009, Corfu, Greece, 2009.

[20] M. Spiliopoulou, I. Ntoutsi, Y. Theodoridis, and
R. Schult. Monic: modeling and monitoring cluster
transitions. In KDD ’06: Proceedings of the 12th ACM

SIGKDD international conference on Knowledge
discovery and data mining, pages 706–711, New York,
NY, USA, 2006. ACM.

[21] N. Tahmasebi, T. Iofciu, T. Risse, C. Niederée, and
W. Siberski. Terminology evolution in web archiving:
Open issues. In 8th International Web Archiving
Workshop, Aaarhus, Denmark, 18th & 19th Sep. 2008,
2008. http://iwaw.net/08/IWAW2008-Tahmasebi.pdf.

[22] N. Tahmasebi, K. Niklas, T. Theuerkauf, and
T. Risse. Using word sense discrimination on historic
document collections. In JCDL ’10: Proceedings of the
10th ACM/IEEE-CS joint conference on Digital
libraries, Gold Coast, Australia, 2010. ACM.

[23] N. Tahmasebi, S. Ramesh, and T. Risse. First results
on detecting term evolutions. In In Proceedings of 9th
International Web Archiving Workshop in conjunction
with ECDL 2009, Corfu, Greece, 2009.


